2022 年CFS非专业级软件能力认证第二轮 入门级模拟训练

时间: 2022年 10月 05日 13: 00-16: 30

中文题目名称	智商测试	灵石采集	足球队	波浪数
英文题目与子目录名	test	collect	footballteam	wave
可执行文件名	test	collect	f ootball t eam	wave
输入文件名	test.in	collect.in	f ootball t eam.in	wave.in
输出文件名	test.out	collect.out	f ootballteam.out	wave.out
每个测试点时限	1秒	1秒	1秒	1秒
测试点数目	10	10	12	10
每个测试点分值	10	10	8	10
附加样例文件	有	有	有	有
结果比较方式		全文比较(过滤行末空格及文末	回车)
题目类型	传统	传统	传统	传统
运行内存上限	512M	512M	512M	512M

注意事项:

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++ 中函数 main() 的返回值类型必须是int,程序正常结束时的返回值必须是 0。
- 3. 提交的程序代码文件的放置位置请参照各省的具体要求。
- 4. 因违反以上三点而出现的错误或问题,申诉时一律不予受理。

智商测试

(test.cpp/c/pas)

【问题描述】

PBC同学智商为-1e9,但是他既不谦虚又不低调,还很喜欢炫耀他的智商。作为他的资深杠友GPD非常看不惯PBC的这种行为,于是GPD决定测试一下PBC的真实智商了,他出了一个简单题让PBC回答,题目是这样的:

已知一个n乘以n的矩阵,有一个小球一开始在(1,1)处,小球每秒都会向右走一格,如果到达最右边,小球就会掉落在下一行的第一格。如果到达(n, n)则返回(1,1)。

现在给定n和时间t,输出小球最后所在的行和列。GPD希望大家写个程序PBC比拼一下 IQ.

【输入格式】

一行两个正整数,n和t。

【输出格式】

输出两个整数代表小球最终的行和列。

【输入输出样例 1】

test.in	test.out
3 5	2 3

【输入输出样例 2】

test.in	test.out
4 2	1 3

【输入输出样例 3】

test.in	test.out
2 7	2 2

【数据规模与约定】

对于 50%数据保证: t ≤ $n^2 - 1$

对于 80% 数据保证: t ≤ n^2

对于 100% 数据保证: $1 \le n \le 10$, $0 \le t \le 6000$

题目数据比较毒瘤,请考虑所有情况。

灵石采集

(collect.cpp/c/pas)

【问题描述】

小C编程编累了,于是他趁老Q去办公室倒水的期间偷偷打开了一个有趣的游戏。 在游戏中,灵石是一种非常重要的资源。每个玩家每天有且仅有一次采集灵石的机 会。

灵石会在许多灵岛上出现,每个灵岛上灵石出现数量可能不同。这些灵岛之间通过传送法阵相连,激活每个岛屿上的传送法阵花费的灵石数量也不同。玩家可以耗费mi 块灵石从任意一个其他灵岛或初始平台前往第i个灵岛。采集完毕后玩家可以从任何浮岛直接退出地图。

现在,小C手中有着K块灵石,他想知道自己今天采集结束后最多能拥有多少块灵石。小C只能趁老Q倒水的时间偷偷玩一会,不然被发现了就麻烦了。他希望你能编写一个程序帮他及时算出来。

【输入格式】

第一行两个正整数N,K分别表示灵岛的数量和小C手中初始的灵石数量。

接下来N行,每行两个正整数ki, mi, 第 i行的正整数 ki表示第 i个灵岛上今日出现的灵石数量, mi表示传送到第 i个灵岛所需的灵石数量。

【输出格式】

一个正整数,表示小C今天采集后最多能拥有的灵石数量

【输入输出样例 1】

collect.in	collect.out	
3 5	8	
4 3		
4 3		
4 3		

【输入输出样例 2】

collect.in	collect.out
------------	-------------

2 1	1	
5 2		
8 2		

【输入输出样例 3】

collect.in	collect.out
2 6	7
2 3	
4 3	

【数据规模与约定】

对于 30%的数据,满足 ki > mi 对于 100%的数据,满足 0 < N, K \leq 10^5, 0 < ki, mi \leq 10^9 保证答案在int范围内。

足球队

(footballteam.cpp/c/pas)

【问题描述】

为了强身健体,老Q准备组织CFS0Ier的学生组成一支足球队,众所周知,一只足球队由11球员组成,其中有一名守门员和一名队长。

现在,有22人组成的一个候选名单,从中要选出11人参加比赛。选拔规则如下: 首先提供一个阵型,例如,4-4-2。第一个4表示有4名后卫,第二个4表示有4名中 场,第三个2表示有2名前锋。当然,还有一个位置就是留给守门员的。

每个人都有自己唯一能打的位置(前锋、中场、后卫、守门员)。在每个位置上,以球员的编号为关键字,从小到大依次选取。

选出球队后还要选出队长。队长是球队中参加比赛次数最多的球员。如果有并列,取编号较大的球员做队长

【输入格式】

前22行每行按如下格式表示出一名球员的信息:

Number Name Role year1-year' 1 year2-year' 2 …

整数Number (<=100)是该球员编号。字符串Name (length<=20)是该球员名字。字符Role是该球员所能打的位置(S前锋、M中场、D后卫、G守门员)。每一对yeari-year'i(yeari<=year'i)表示该球员效力的时间段,例如2001-2002表示该球员效力了两年2001年和2002年。至少有1对年份,最多20对年份。年份是一个四位数。同一个年份不会出现在两对年份中。球员的编号在球队中是唯一的。

第23行给出一个阵型,例如4-4-2。保证阵型有且仅有3个正整数组成,且和等于 10。例如,4-3-2-1是不合法的。

【输出格式】

输出选出的11名球员,每一行包括球员编号,姓名,场上所打位置。之间用一个空格隔开。球员按守门员、后卫、中场、前锋的顺序排序,相同位置按编号从小到大排序。如果一名球员是队长,那么无论他打什么位置,都放在序列的第一个。如果无法找出11个满足条件的球员,输出"IMPOSSIBLE TO ARRANGE"。

【输入输出样例 1】

footballteam.out
7 PlayerM S
15 PlayerP G
1 PlayerD D
3 PlayerU D
6 PlayerI D
10 PlayerC D
2 PlayerB M
4 PlayerZ M
8 PlayerF M
9 PlayerA M
5 PlayerR S

21 PlayerN S 2003-2006	
13 Player0 S 2005-2006	
15 PlayerP G 2001-2006	
14 PlayerQ D 2003-2004	
5 PlayerR S 2000-2005	
20 PlayerS G 2000-2002 2003-2003	
12 PlayerT M 2004-2005	
3 PlayerU D 2000-2005	
4 PlayerZ M 2001-2004	
4-4-2	

波浪数

(wave.cpp/c/pas)

【问题描述】

LZX用了两个半小时完成了今天的所有题目,他觉得今天稳稳的能AK所有题,所以他计划给大家明天出一道试题,他想起曾经在DOTA游戏中操刀水人在关键时刻释放了一个波浪技能,扭转了他团队的劣势,反败为胜。为了好好纪念这个技能,他决定让大家帮他一起研究波浪数,波浪数的概念是这样的:对于除首尾位置之外的元素,每一个位置要么比两侧相邻的数字小,要么比两侧相邻的数字大。例如【1,3,2,5,3,4】就是一个波浪数组,而【2,3,4,1,2】则不是,因为第二个位置3比左边的数字2大,比右边的数字4小。**注意**:根据定义,长度小于等于2的数组一定是波浪数组。

现在有一个长度为n数组,每次操作可以将任意一个位置的数字修改成任意一个新数字。 小C想要将其变成一个波浪数组,请问最少需要修改几次?

【输入格式】

输入第一行包含一个正整数n,代表数组长度。 接下来一行包含n个正整数,其中第i个数字表示数组的第 i 个元素 a_i

【输出格式】

一个整数,最少需要修改的次数

【输入输出样例 1】

wave.in	wave.out
6	3
1 1 2 2 3 3	

【输入输出样例 1 说明】

可以将数组改为 [1,5,2,4,1,3] 或者 [1,0,2,-1,5,3] 等,都是波浪数组,其中加粗的数字表示被修改的数字。我们可以发现至少修改三个数字才可以将原来的数组变为波浪数组,所以答案为 3。

【输入输出样例 2】

wave.in	wave.out
11	3
703 702 703 703 702 703 702 702 702 700 702	

【数据范围】

对于 10% 的数据,有 $1 \le n \le 20$ 。对于 30%的数据,有 $1 \le n \le 1000$ 。 对于另外 10% 的数据,有 $1 \le n \le 10^5$,且数组元素各不相同。 对于另外 10% 的数据,有 $1 \le n \le 10^5$,且数组元素全部相同。 对于 100% 的数据,有 $1 \le n \le 10^5$,且 10^5 ,且 10^5 。